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Abstract 

This report examines the statistics of the phase and magnitude of SAR inter- 
ferograms towards the deployment of along-track interferometry (ATI) for slow 
ground moving target indication (GMTI). Great importance is attached to the 
practical applicability of the derived theoretical results, particularly with regard 
to the experimental MTI-mode of Radarsat2. Therefore, the results are evaluated 
with experimental airborne SAR data acquired during flight trials conducted in 
Petawawa in 1999. While the known probability density function (pdf) of the 
interferogram's phase (derived under the assumption of Gaussian backscatter) is 
shown to agree almost perfectly for a wide variety of backscatter conditions, the 
corresponding magnitude's pdf tends to deviate strongly in most cases. Moti- 
vated by this discrepancy, a novel distribution is derived for the interferogram's 
magnitude. This pdf, called the polynomial or p-distribution, matches the real 
data much more accurately, particularly for extremely heterogeneous composite 
terrain. Based on these statistics, a completely automatic detection scheme with 
constant false alarm rates for slow moving targets is proposed. All involved pa- 
rameters required to determine the detection thresholds are estimated from the 
sample data. It is demonstrated on the basis of a real SAR scene that this de- 
tector is capable of detecting slow moving vehicles within severe ground clutter. 
Finally, practical aspects of the implementation and numerical stability are ad- 
dressed, since many of the functions involved are comprised of indefinite power 
series which have to be handled cautiously. 
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Resume  

Le present rapport examine les statistiques de phase et d'amplitude des interfero- 
grammes RAS en vue de 1'application de l'interferometrie longitudinale (ATI) ä 
la detection de cibles terrestres mobiles (GMTI) lentes. Une grande importance 
est accordee ä 1'applicability pratique des resultats theoriques derives, notam- 
ment ä l'egard du mode MTI experimental de Radarsat2. Par consequent, les 
resultats sont evalues par comparaison avec des donnees d'un RAS experimental 
aeroporte acquises lors d'essais en vol effectues ä Petawawa en 1999. Alors 
qu'il est demontre que la fonction de densite de probability (pdf) connue de 
la difference de phase de l'interferogramme (derivee en supposant qu'il y a 
retrodiffusion gaussienne) concorde presque parfaitement pour une grande variete 
de conditions de retrodiffusion, la pdf de l'amplitude correspondante tend ä 
s'ecarter fortement dans la plupart des cas. Basee sur cet ecart, une distribution 
nouvelle est derivee pour l'amplitude de l'interferogramme. Cette pdf, appelee 
distribution polynomiale ou distribution p, concorde beaucoup plus exactement 
avec les donnees reelles, en particulier pour un terrain composite extremement 
heterogene. En se basant sur ces statistiques, on propose un Systeme de detection 
entierement automatique avec des taux de fausse alarme constants pour les cibles 
mobiles lentes. Tous les parametres necessaires pour determiner les seuils de 
detection sont estimes ä partir de l'echantillon de donnees. II est demontre 
ä l'aide d'une scene RAS reelle que ce detecteur est capable de detecter des 
vehicules se deplaant lentement dans un clutter de sol intense. Enfin, on aborde 
les aspects pratiques de la mise en application et de la stabilite numerique, puisqu 
'un grand nombre des fonctions en cause se composent de series de puissances 
indefinies qui doivent etre manipulees avec prudence. 
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Executive summary 
In air-to-ground radar surveillance it is desirable to be able to detect small mov- 
ing targets such as tanks or wheeled vehicles within strong ground clutter. One 
possible way to achieve this is Along-Track SAR Interferometry (ATI). ATI ex- 
ploits the difference in the echoes of two channels observing the same scene 
at different time. These channels are aligned in the flight direction of the plat- 
form. For stationary terrain the two channel signals are identical and can be 
canceled out (clutter suppression) by computing the phase difference, i.e. the in- 
terferogram, whereas the moving targets remain in the differential data. Precise 
knowledge of the interferogram's phase and amplitude statistics is crucial for the 
development of statistically based detector tests for distinguishing the moving 
targets from the clutter. 

This report examines, theoretically, the statistics of the phase and magnitude of 
SAR interferograms towards the deployment of ATI for slow ground moving 
target detection. The theoretical results presented in this report were compared 
to real data acquired during an experiment conducted at Canadian Forces Base 
(CFB) Petawawa on July 14, 1999. While the known statistics of the interfero- 
gram's phase are shown to agree almost perfectly with the real data for a wide 
variety of backscatter conditions, the corresponding magnitude statistic deviates 
strongly in many cases. A novel distribution for the interferogram's magnitude is 
derived to overcome this problem. It is shown that this function matches the real 
data much more accurately, particularly for extremely heterogeneous composite 
terrain. Based on these new distributions, a constant false alarm rate (CFAR) 
detector scheme is proposed and its performance on real SAR scenes is demon- 
strated. This detector is fully autonomous, i.e. all needed parameters and thresh- 
olds are estimated from the sample data set. Further, some issues are addressed 
concerning the practical implementation, such as numerical stability. 

While most statistical investigations on multi-channel SAR are either focused on 
across-track interferometry for the generation of digital elevation maps (DEM) or 
on polarimetry, this report deals with the problem of along-track interferometry 
for moving target detection. Since the introduced theoretical analysis is generally 
valid, the results are also useful for producing DEM's or for the polarimetric 
classification of targets. The detection thresholds based on the new statistic are 
much more accurate, i.e. they lead to significantly reduced false alarm rates, 
particularly for the operational case of extremely heterogeneous terrain. Great 
importance is attached to the practical applicability of the derived theoretical 
results, particularly with regard to the experimental MTI-mode of Radarsat2. 

Christoph H. Gierull. 2001. Statistics of SAR Interferograms with Application to Mov- 
ing Target Detection. DREO TR 2001-045. Defence Research Establishment Ottawa. 
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Sommaire 

En surveillance par radar air-sol, il est souhaitable d'etre capable de detecter de 
petites cibles mobiles telles que des chars ou des vehicules ä roues dans un clut- 
ter de sol intense. Un des moyens utilises ä cette fin est 1'interferometrie RAS 
longitudinale (ATI). L'ATI met en valeur la difference entre les echos de deux 
canaux observant simultanement une meme scene. Ces canaux sont alignes dans 
la direction de vol de la plate-forme. Pour le terrain stationnaire, les signaux 
des deux canaux sont identiques et peuvent etre elimines (suppression du clut- 
ter) au moyen du calcul du dephasage, c.-a-d. l'interferogramme, alors que les 
cibles mobiles demeurent dans les donnees differentielles. La connaissance ex- 
acte des statistiques de phase et d'amplitude de l'interferogramme est essentielle 
ä l'elaboration d'essais de detection de cibles mobiles. 

Le present rapport examine theoriquement les statistiques de phase et d'amplitude 
d'interferogrammes RAS en vue de l'application de l'ATI ä la detection de cibles 
terrestres mobiles lentes. Les resultats theoriques presentes dans ce rapport 
ont ete compares avec des donnees reelles acquises lors d'une experience ef- 
fectuee ä la base des Forces canadiennes (BFC) Petawawa le 14 juillet 1999. 
Alors qu'il est demontre que les statistiques connues de la difference de phase 
de l'interferogramme concordent presque parfaitement avec les donnees reelles 
pour une grande variete de conditions de retrodiffusion, les statistiques d'amp- 
litude correspondantes s'ecartent fortement dans bien des cas. Une distribu- 
tion nouvelle de 1'amplitude de l'interferogramme est derivee pour regier ce 
Probleme. II est demontre que cette fonction concorde beaucoup plus exactement 
avec les donnees reelles, en particulier pour un terrain composite extremement 
heterogene. En se basant sur ces nouvelles distributions, on propose un Systeme 
de detection de taux de fausse alarme constant (CFAR) et on fait la demonstration 
de ses performances sur des scenes RAS reelles. Ce detecteur est entierement 
autonome: tous les parametres et seuils necessaires sont estimes ä partir de 
l'echantillon de donnees. De plus, on aborde quelques questions ayant trait ä 
la mise en application pratique, teile que la stabilite numerique. 

Alors que la plupart des etudes statistiques du RAS ä canaux multiples se con- 
centrent soit sur l'interferometrie transversale pour la production de cartes al- 
timetriques numeriques (CAN), soit sur la polarimetrie, le present rapport aborde 
le probleme de 1'interferometrie longitudinale en vue de la detection de cibles 
mobiles. Puisque 1'analyse theorique presentee est generalement valide, les 
resultats sont egalement utiles pour produire des CAN ou pour la classification 
polarimetrique des cibles. Les seuils de detection bases sur les nouvelles statis- 
tiques sont beaucoup plus precis, c.-a-d. qu'ils donnent lieu ä des taux de fausse 
alarme grandement reduits, en particulier dans le cas operationnel d'un terrain 
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extremement heterogene. Une grande importance est accordee ä l'applicabilite 
pratique des resultats theoriques derives, notamment ä l'egard du mode MTI 
experimental de Radarsat2. 

Christoph H. Gierull. 2001. Statistiques d'interferogrammes RAS appliquees ä la 
detection des cibles mobiles. DREO TR 2001-045. Centre pour la Recherche de la 
Defence Ottawa. 
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1.   Introduction 

1.1  Background 

In the past several years the statistics of the intensity and phase of multi-channel 
SAR imagery has been intensively studied. In polarimetry, the statistics help with 
the detection and discrimination of target signatures in a ground clutter back- 
ground [5-7]. In another major application, the across-track SAR interferometry, 
the exact knowledge of the statistics is crucial in order to quantitatively analyse 
the influence of decorrelation on the phase and hence measure the achievable 
height accuracy, e.g. [8-10]. Although, these statistics are, in principle, directly 
applicable to the problem of moving target detection via along-track interferom- 
etry, no explicit study or investigation is known to the author. 

In along-track interferometry, knowledge of the probability distribution of the 
phase difference will offer the possibility to derive a constant false alarm rate 
(CFAR) detector for moving targets. Previous derivations used the underly- 
ing assumption of jointly Gaussian-distributed data in each of the two images 
(see section 2). However, experimental data indicate large deviations from the 
consequent Rayleigh statistics, for instance over sea surface or urban areas. In 
such cases the observed distributions show longer tails and larger variance-to- 
expectation-ratios than predicted by the Gaussian distribution (spiky clutter). 

Among many non-Gaussian statistics, the Weibull and K-distribution have proven 
particularly useful in characterizing the amplitude distribution of electromag- 
netic echoes from heterogeneous terrain, for instance, the sea surface [1]. The 
K -distribution results when the mean RCS of the individual scatterer is itself 
randomly distributed with a Chi-square distribution on spatial scales close to, 
or larger than, the spatial resolution [2]. Unfortunately, even the K-distribution 
sometimes fails to model extremely heterogeneous clutter such as that of urban 
areas. Moreover, when the area of interest is large compared to the size of the 
potential targets, e.g. large swathwidth, the scene might consists of composite 
landscape types, such as urban areas surrounded by forests and farmland. Fur- 
thermore, the modified Bessel functions often make the calculation of tests and 
thresholds a difficult and unstable numerical task, especially for large arguments 
that are typical for along-track interferometry with high coherence and large RCS 
(see section 2.3). 

Analytical studies of the statistics of the multilook interferogram's phase and 
magnitude are very rare for non-Gaussian SAR image distributions. In this re- 
port, a recently proposed generalised distribution to describe the statistic of the 
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SAR image amplitude1 will be applied to derive an analytical density function 
for the interferogram amplitude for extremely heterogeneous terrain. This family 
of distributions does not contain Bessel functions, yet results in density functions 
which have the same number of parameters as the K-distribution. This distribu- 
tion arises when the SAR image amplitude (or mean RCS) can be modeled as 
the square root of an inverse Gaussian-distributed random variable [3]. 

1.2 Real Data 

The theoretical results presented in this report were compared to real data ac- 
quired during an experiment conducted at Candian Forces Base (CFB) Petawawa 
on July 14, 1999. SAR GMTI data was acquired by the Environment Canada 
CV 580 C-band SAR configured in its along-track interferometer (ATI) mode. 
The surface component of the experiment provided GPS monitored, controlled 
moving targets for use in validating SAR GMTI, and video monitored targets of 
opportunity to provide a range of realistic vehicle target signatures and speeds. 
The controlled targets included a set of unobstructed, moving corner reflectors 
sited in terrain that has a low radar cross section. The entire experiment includ- 
ing several preliminary results is described in detail in [4]. Fig. 1 shows a SAR 
image of the test site. The urban component of CFB Petawawa is seen at the 
bottom left of the image. The experiment site, including Highway 17, occupies 
the upper left half of the image. 

Several nearly homogeneous areas within line 7, pass 10, have been chosen to 
compare the theoretical probability function given in the following section with 
some real clutter data, see Fig. 2. Some different larger patches have been used 
for heterogeneous composite clutter. These patches include moving targets and 
are also used to demonstrate the detector performance in section 4. 

'The so-called g° distribution [3]. 

DREOTR 2001-045 



July is 

ä250Ö 

2OO0 

rsoo 

WOO 

SOD 

200 400 t200S SI400 'woo leoo 2000 

Figure 1:   HH polarized SAR image of CFB Petawawa, I6p7, July 14th, 1999. 
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Figure 2:   Selected patches for the clutter analysis (the SAR image is upside-down 
with respect to Fig. 1).) 
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2.   Homogeneous (Gaussian) Clutter 

The amplitude of the clutter is often assumed to be Rayleigh-distributed, imply- 
ing that the quadrature components of the received echoes are jointly Gaussian 
processes. This fact assumes a very rough (on the scale of the wavelength) but 
homogeneous amplitude backscatter, i.e. a constant mean radar cross section 
(RCS) c across the imaged area. If this assumption is valid, the complex image 
can be regarded as resulting from the sum of statistically independent contri- 
butions from many randomly oriented elementary scatterers. The central limit 
theorem states that such a summation can be modeled as complex normal distri- 
bution regardless of the single backscatter distributions. This effect results in a 
granular pattern and is commonly denoted as speckle [5]. The assumption has 
been proven to be justified in most agricultural and natural areas, whereas it may 
not be warranted in more heterogeneous surfaces like urban areas or sea surfaces. 

Let the zero-mean complex signals of N different channels define the vector 
Z = [Zi, • • • ,ZN]. Under the assumptions mentioned above, Z, with 

Zi = OiXi   V   i=l,---,N       where   &**(? (0,1), (1) 

can be modeled as a multivariate complex Gaussian random vector with density 

where R denotes the covariance matrix R = EZZH. The superscript H denotes 
complex conjugate transpose and det(R) the determinant of R [6]. In the case of 
interferometry usually only two channels are involved, i.e. the dimension of Z is 
chosen to be N = 2 from here onwards (without loss of generality) and the off- 
diagonal elements of the covariance matrix R correspond to the desired complex 
interferogram. 

In order to reduce the speckle, polarimetric and interferometric data are fre- 
quently multilook processed. Multilook interferometric processing requires av- 
eraging several independent one-look interferograms. In other words several in- 
dependent one-look sample covariance matrices are averaged. The «-look sam- 
ple covariance matrix is given as 

1  " 
nk=\ 

(2) 

where n is the number of looks and z* the fc-th one-look sample (also called 
snapshots). The sample covariance matrix is well-known to be complex Wishart- 

DREOTR 2001-045 



distributed A = riR ~ W£ (n,R) [6] with probability density 

A (A) = ^r!„p(-tt{R-iA}) (3) 

where 7„(R) = %T(n)T(n -1) |R|". Based on this density function, the multilook 
phase-difference and multilook amplitude have been derived in [7, 8]. 

2.1 Joint Probability Density Function of Magnitude and 
Phase 

The joint probability /£,«P(T|,\|/) of the multilook amplitude 2 and phase of the 
interferogram has been given as 

.     ,      . 2nB+V /2nri|p|cos\|A v     (   2nx\   \ 

where Kn is the modified Bessel function of order n [2, 7, 9]. 

The variable |p| denotes the magnitude of the complex correlation coefficient of 
the two images. The complex correlation coefficient is one important parameter 
in characterizing the statistics. It is defined as 

—     EZlZ2*        EZlZ2*   lPlexP;e (5) 
^/E|Zi|2E|Z2|

2      GWi 

with E denoting the expectation operator. The magnitude of the complex corre- 
lation coefficient will be referred to as coherence in the following for simplifica- 
tion of notation. Cross-channel correlation is a potential source of information 
in different areas of remote sensing. It is a composite measure of all effects 
which lead to any decorrelation of the signals, for example, temporal decorre- 
lation due to surface or backscatter changes added to the unavoidable receiver 
or sensor noise. In across-track interferometry, for instance, the coherence is 
computed to select areas in which accurate digital elevation models (DEM) can 
be generated. The precision of such DEM's are highly dependent on the co- 
herence magnitude, particularly for repeat-pass interferometry, e.g. [10]. The 
coherence might also be used to determine the signal-to-noise ratio for a given 
radar system. Typical values for solid surfaces in single-pass across-track inter- 
ferometry as well as for along track interferometry are between 0.94 and 0.99. 
The value is smaller for water surfaces at about 0.8. The statistical properties 
of the Maximum-Likelihood Estimator of the coherence based on (5) are given 

formalized to the product of the power of the two single channels ai<T2 
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in [11]. Herein, it is shown analytically that this commonly used estimator is 
highly biased under low coherence conditions when calculated with only a small 
number of samples (see section 4.1.1). 

Two examples of the joint density function of (4) are plotted in Fig. 3 and 4 
for n = 1 and n = 10, respectively. The mutual coherence between the looks 
was chosen to be |p| = 0.981. Fig. 3 shows the typical behavior of the phase 
fluctuation (variance), large for small clutter amplitudes and strongly decreasing 
for larger magnitudes. Increasing the number of independent looks clearly leads 
to speckle reduction and hence smaller variance even for moderate interferogram 
magnitudes. 

Phase [deg] 

Figure 3:   Theoretical joint probability density function of the interfero- 
gram's phase and magnitude. The number of looks is one. 
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Figure 4:    Theoretical joint probability density function of the interfero- 
gram's phase and magnitude. The number of looks is ten. 

2.2 Marginal Probability Density Function of Phase 

The multilook phase difference between the two channels is obtained by 

nk=\ 
(6) 

\P is tire argument of the off-diagonal term in the multilook sample covariance 
matrix R. 

Integrating (4) over the magnitude variable t| leads to the marginal multilook 
density function for the phase 

^ ,  s      r(n+l/2)(l-|plTß      (l-lplT 

for -% < \)/ < JC, where ß = |p|cos\|/. Herein, 2*1 (•) denotes the Gauss hyper- 
geometric function, see e g. [12]. The pdf of (7) depends only on the number of 
looks and the magnitude of the complex correlation coefficient. The peak of the 
distribution is located at \[r = 0. For the application of along-track interferometry 
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the peak should be centered around zero, assuming the data are accurately cali- 
brated. It can be shown that the phase is uniformly distributed when |p| = 0 and 
becomes a Dirac delta function when |p| = 1. It is also evident that multilook 
processing improves the phase accuracy, i.e. the variance of the phase decreases 
for a larger number of looks [13,7]. 

Fig. 5-8 show representative results of the empirical phase distribution for dif- 
ferent numbers of looks and different surface types. For convenience, the peaks 
of the histograms are normalized to one and the corresponding density functions 
scaled accordingly. Patch 24 is mainly grass, and patch one is widely covered 
with jackpines. The coherence has been estimated according to (28). These ex- 
amples demonstrate on one hand the almost perfect agreement of the theoretical 
and empirical results, and on the other hand, that the phase statistic is mainly 
independent of the clutter or surface type. This observed property of the phase 
statistic strongly supports other, mainly polarimetric, studies that have reported 
identical results [7, 2]. An explanation will be given at the end of the following 
section. 

"8.0.6 

patchl sic:      Marginal pdf of phase, rho=0.985, Nlooks=1 

-80 -60 -40 -20 0 20 
Phase [deg] 

40 60 

Figure 5: One-look theoretical and empirical phase probability density 
function of patch one. 
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patchl:      Marginal pdf of phase, rho=0.981, Nlooks=10 
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Figure 6:   Ten-look theoretical and empirical phase probability density 
function of patch one. 

patch24slc:      Marginal pdf of phase, rho=0.96, Nlooks=1 

0.8 ■ 

"8.0-6- 

0.4 

0.2 ■ 

-80 -60 -40 -20 20 40 60 80 
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Figure 7:   One-look theoretical and empirical phase probability density 
function of patch 24. 
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patch24:      Marginal pdf of phase, rho=0.965, Nlooks=10 
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Figure 8:   Ten-look theoretical and empirical phase probability density 
function of patch 24. 

2.3 Marginal Probability Density Function of Magnitude 

The magnitude of the product of z\ and z\ represents the magnitude of the in- 
terferogram. It can also be used as a measure for detecting moving targets since 
they often have a higher radar cross section than their surrounding stationary 
environment. The normalized multilook interferogram magnitude is defined as 

£ 
liLUzijkMkyl _i\LUzi(k)z2(ky 

yE\zi\2 E|z2| 
<5\<52 

(8) 

It should be pointed out, that the normalization in along-track interferometry is 
very often performed by replacing the denominator in (8) with the sample mean 
value taken over L pixels of the (n-look) interferogram amplitudes, i.e. 

1   L 

where % is given by the numerator of (8). For coherence values close to one, the 
substitution is a valid approximation because 

EC = p<Jia2 = aiG2       if   p = l. 
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The pdf of the amplitude T|, derived by integrating (4) with respect to the phase 
\j/, is given as 

Mri> - r(„)(i-|PP)'° \-^W) Kn-' [T=W) (9) 

where To and Kn-\ are modified Bessel functions of order zero and n—1, respec- 
tively [7]. The variance of £ again decreases for larger number of looks. Fig. 
9-12 show the corresponding empirical and theoretical pdf's for the multilook 
magnitudes. The plots show that the magnitude distribution varies with the sur- 
face type. For patch 24 the Gaussian assumption for the backscatter distribution 
seems valid, whereas for patch one it does not. 

Since the term nr| can be large for many practical cases (and the Bessel function 
K(-) tends to infinity rapidly), the accuracy of a direct computation of (9) can 
be poor, especially with a limited precision data format. In the following, one 
possible way to overcome this problem is introduced. An asymptotic expansion 
of the product of the two Bessel functions, see (D.l) and (D.2), in (9) can be 
written as 

2\/|pk 
£( l)k     r(*+j) i    \(£     r(n+*-±)       i 

^to       r(*+i)r(i-*) (2|p|c)*y \&r{k+i)r{n-l-k) (2c)* 
= exp(-(l-lpl)c) 

f f (-i)*r(*+j)r-i(*:+i)r(,z+,n-i) i 
fcoJto       r(i-/t)r(m+l)r(«-m-i)       2*+»|p|*c*+»+i ^    ; 

with c = 2nr|/(l — |p|2). Substituting the product-expansion of (10) into (9) then 
yields 

r(»)"'V (i + lPl). 
y y A-^r^+lJr-^+ijrfc+m-i) 
'hh{    r(J-fc)r(m+i)r(n-m-j) 

22(fe+m) nk+m—n^i k+m—n+1 (ID 
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Figure 9:   One-look theoretical and empirical normalized magnitude 
probability density function for patch one. 

patchl:      Marginal pdf of magnitude, rho=0.981, Nlooks-10 
-i 1 1 1 1 1 1 1 r 

■g.0.6 

Figure 10:    Ten-look theoretical and empirical normalized magnitude 
probability density function for patch one. 
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Figure 11:   One-look theoretical and empirical normalized magnitude 
probability density function for patch 24. 

patch24:      Marginal pdf of magnitude, rho=0.965, Nlooks=10 
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Magnitude 

Figure 12:   Ten-look theoretical and empirical normalized magnitude 
probability density function for patch 24. 

14 DREOTR 2001-045 



2.4 Conditional Probability Density Function of Phase 
for a fixed Magnitude 

For future moving target detectors it might be advantageous to work with limited 
ranges for the interesting parameters. It can, for instance, be interesting to look 
at phase differences for some specific magnitude values. In order to develop such 
a detector, the so-called conditional pdf of the phase for a fixed magnitude has to 
be known. This conditional density /«p|£=*n(#l)is defined as [14]: 

assuming that /E(ri) > 0. Inserting (4) and (9) into (12) yields 

...      1 exp(2rnilp|cos\|//(l-|pl2)) 
/vifcnWl) - ^      /0(2nri|p|/(l - |p|2))      ' 

Again, the term nrj can be large and the accuracy of (13) might be limited. Using 
the Annex D.l, (13) can be written as 

^™~ J^A^***-") 
l\ H l> r(*+i)r(i-*)(4n|p|Ti/(i-|p|2)) a=o 

Further, in Annex A it is shown that the conditional variance tends to zero as 
the normalized magnitude tends to infinity, for any coherence value greater than 
zero. In other words, the conditional phase pdf (for fixed normalized magnitude) 
degenerates towards a Dirac delta function for larger magnitudes even if the two 
channels remain partly decorrelated. This property is important in cases where 
the underlying decorrelation effect is multiplicative in nature3. The impact of the 
additive noise on the signal decorrelation vanishes when the signal-to-noise ratio 
tends to infinity, i.e. the clutter magnitude tends to infinity and hence |p| tends to 
one. In the case of multiplicative phase noise, for instance caused by oscillator 
jitter [15], this impact will not disappear and |p| will converge to a constant value 
less than one. 

3In contrast to the usual additive receiver noise 
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3.   Heterogeneous (Non-Gaussian) Clutter 

3.1  Exogenous Model 
3.1.1   Compound One-Look Statistic 

Experimental data amplitudes indicate large deviations from the Rayleigh- 
amplitude distribution, especially for heterogeneous terrain. In such 
cases the histograms show larger tails, i.e. a higher probability of larger 
SAR image amplitudes. It has become clear that a single amplitude dis- 
tribution cannot accommodate all of the different scenarios. Instead, a 
class or family of distributions has to be considered, where the Rayleigh 
distribution must be a member. Among such, the Weibull and K-distribution 
have received a great deal of attention in the literature, e.g. [3],[16]. 
These distributions result from a compound (often called multiplicative) 
model for the clutter and have been proven to fit a wide range of exper- 
imental data well. Herein, it is assumed that under certain conditions 
[17] the one-look SAR returns can be modeled as a product of Gaussian 
speckle and an independent modulating random variable A (rather than 
a constant a, see (1)) 

Zt=AXi   V   i=l,---,N       where   X{ ~ 9^ (0,1).        (15) 

For the one-look K-distribution, the random variable A has a chi-square 
distribution [1] and for the Weibull distribution its density can be ex- 
pressed in terms of Meijers G functions [16]. Even the K-distribution 
sometimes fails to model extremely heterogeneous clutter such as urban 
areas or areas of interest that are large compared to the size of the poten- 
tial targets, i.e. the scene is so large that it consists of different landscape 
types. The generalization from a random variable A to a stochastic pro- 
cess A(t) with certain correlation properties is investigated in [16]. The 
classical K- and Weibull-distributions have been extended by Frery et. 
al. [3] who proposed a square root of a generalized inverse Gaussian 
distribution for the modulating random variable A. It has been shown 
that the Rayleigh and also the K-distribution are special cases of this 
approach. 

Fig. 13 demonstrates the failure of the Gaussian assumption for hetero- 
geneous terrain. Here, the histogram of the real part or in-quadrature 
component of channel one is plotted along with two theoretical densi- 
ties. The dashed one represents the fitted Gaussian distribution and the 
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solid one the so-called ^-distribution [3] with density 

fA(a) = 
r(v + l/2)Yv 

V^(v)      (fl2+Y)v+l/2- 
(16) 

The shape parameters v and y are estimated from the same dataset. It 
is evident that this recently proposed density matches the empirical data 
much better4 than the Gaussian distribution which is significantly mis- 
matched. 

Figure 13:   One-look histogram of the real part of channel one for patch 
one. Normal distribution (dashed), g^-distribution (solid). 

The proposed density in (16) does not involve modified Bessel functions 
unlike the K-distribution. The calculation of tests and thresholds for the 
K-distribution is often difficult and numerically unstable, especially for 
large arguments. Large arguments of the Bessel functions are typical 
for along-track interferometry with high coherence and backscatter RCS 
(compare also section 2.3). 

"Except for a small area around zero. This is not crucial because the main interest lies in the shape of 
the tails in order to determine detector thresholds 
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3.1.2   Extension to Multi-look Statistic 

If the one-look multiplicative model in (15) holds, it is evident that the 
ratios between channel amplitudes (commonly used in SAR polarime- 
try) as well as phase differences have exactly the same distribution as 
those derived for Gaussian data. This is due to the independent nature 
of the modulation or fluctuation of the random variable A in the com- 
pound model. The random variable A cancels out when the ratio or the 
phase is calculated. 

For the SAR image amplitude, the K-distribution has been extended to 
the multilook case [18] and was shown to work well for sea-ice returns. 
Since the key assumption in this derivation is of major importance to the 
understanding of the physics behind the model and is also used in this 
report, it will be reviewed and summarized in the following. A large 
portion of the description and explanation is borrowed from Joughin 
et. al. [2]. 

Let the area of interest be divided into a certain number of multi-look 
resolution (or spatial) cells. An n-look cell consists of n one-look cells 
with sizes that are determined by system parameters such as bandwidth 
and processor parameters such as processed Doppler bandwidth and 
platform velocity. The situation is illustrated in Fig. 14. Herein, thick 
lines delimit multilook cells and thin lines delimit single-look cells. The 
mean RCS is qualitatively represented by the pattern of the squares. 

Following the model (15), the received quadrature components X from 
each channel are normal-distributed with variance proportional to the 
underlying y'-th single-look radar cross section Aj. This "local" RCS is 
assumed to be a random variable itself. Again, the choice of a chi-square 
distribution for Aj leads to a .^-distribution of the SAR image intensity 
distribution. 

Consider an n-look covariance matrix that is the average of single-look 
matrices given in (2) and substitute Zy by (15), we get 

ft.=££>&*?. 
nj=l 

(17) 

By assuming that the backscatter fluctuation occurs on a scale greater 
than or equal to the size of the multilook cell (Fig. 14 left and cen- 
tre), the single cell random variable Aj will effectively be all identical 
Aj = A within the n-look cell, though it may vary between neighboring 
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multilook cells. Hence, the random variable A can be factored out of the 
sum 

U  7=1 

(18) 

and the multiplier A2 still cancels out when the phase (or any ampli- 
tude ratio) is calculated. The statistics of this ratio are identical to those 
of a homogeneous terrain (Gaussian assumption). The almost perfect 
agreement of theoretical and empirical marginal phase densities for dif- 
ferent numbers of looks even for patch one in Fig. 5 and 6 validates this 
assumption. 

Figure 14: Schematic illustration of mean RCS; (left) uncorrelated from multilook 
cell to multilook cell but correlated with single-look ce//s,(centre) cor- 
related with neighboring multillook cells and (right) uncorrelated from 
single-look cell to single-look cell. 

Cross section fluctuations on scales smaller than the multilook cell size 
do not cancel out because Äj is not constant across the n-look cell. 
Nonetheless, the summation of independent random variables with fi- 
nite variance approaches a normal distribution as n increases, as does 
the corresponding summation in the case of the Gaussian assumption. 
The validity of this assumption is supported by the results in Fig. 15 and 
16, in which the histogram of the real part of channel one is compared 
to a fitted Gaussian model for different number of looks. The standard 
deviations between the two curves are calculated and the much smaller 
value for ten looks indicates that the histogram indeed tends towards a 
Gaussian distribution as n increases. This suggests that the form of the 
multilook phase difference distribution in (7) from the homogeneous 
model may represent observations well for a sufficiently large number 
of looks, although shape parameters estimated from the data itself may 
differ from the true underlying covariance matrix. 
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3.2 Novel Marginal Probability Density Function of Mag- 
nitude 
Even though the multilook phase difference distribution has been retained un- 
changed, the interferogram's multilook magnitude differs from the Gaussian as- 
sumption case because A2 in (18) does not cancel out. This can clearly be seen 
in the disagreement of histogram and theoretical pdf in Figs. 9, 10 and 13. In 
this section, a new analytical multilook density function for the magnitude will 
be derived and compared with observations. 

Frery et. al. [3] proposed a reciprocal of the square root of a Gamma distribution 
(or generalized inverse Rayleigh distribution) as a statistic for A to characterize 
highly heterogeneous clutter. It is shown in Annex B that the square of A is then 
central inverse chi-square distributed with density (B.5). Using this distribution 
for A2, a new closed form multilook density function for the modified sample 
covariance matrix in (18) has been calculated in Annex C: 

„vdettRrW 1  
J*"{   n)~   /m(R)r(v)    ^+tr{R-iR„} 

where /m(R) = ^m-^2T{n) ■ ■ -T{n - m + 1) det(R)". 

Since all elements of the sample covariance matrix are multiplied by the same 
random variable, the modified interferogram magnitude Z is given by 

Z = AllE:=WL, (19) 

with w := A2, compare also (8). Using (C.2) in Annex C, the pdf of Z can be 
written as 

Ä®=r5A,wA(w)*' 

where 

P """+'<>V a„d       K ?!_(• ß-i»r(v)(i-|Pp)     mi     K-I-IPPQ- 
Substituting the integrand t = 1/w and inserting the expansion (10) for the prod- 
uct of two Bessel functions leads to 

fZ(Q= ßf f w r^+v-*-*-i«Kip|-i),c-',if* 
it=0m=0 J0 

- fir V T(n + v-k-m) 

-^o£ogmV(iPi-i)Kr+v-*-m 
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with 

(-l)kr(k+\)TTl(k+l)r(n + m-\) 
8m,k — 

T{\-k)T{m+\)T(n-m-\)       2*+™+1|p|*+1/2K*+m+r 

Inserting K= 2n£/(l - |p|2) into (21) yields after some transformations 

_ nV (1 - jp|2)v+n t^-i 
fz(Q n+v r(n)r(v)       ((l-|p|2);U_2n(|p|-l)Q 

y y ( (-1)*r(fe+s) r(n+m-\)r(n+v-k-m) 
"Äom=oVr(/:+l)r(i-/:)r(m+l)r(n-m-I)|p|W2 

(l-|p|2)^-2n(|p|-l)CxHmX 

4«C 
(22) 

It can be numerically shown that the double sum in (22) can be well approxi- 
mated by a constant value k over the entire range C, e IR+. Hence, 

fz(Q = kr,"- * ™ (23) n+v r(n)r(vy /n    zn   c ^ 

where k is determined by the fact that 

r(„)r(vyY 
n"5(/i,v)    ' (    } 

where ß(a,fc) = T(a)T(b)/r(a + b) is the Beta-function. Inserting (24) into (23) 
finally results in 

A(0=*M)(i+*r' (25) 

where 
2n 

'     Ml + IPl)' 
The density (25) looks similar to a F-distribution and belongs to the class of so- 
called ^-distribution which was originally introduced as the statistic for SAR 
image intensities [3]. For convenience it will hereafter be called the polynominal 
or p-distribution. 
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The r-th moment Et,r can be calculated by 

mr:= EC'= rCTfz&W 
Jo 

rn+r-\ 
= V        f 

B(n,v) Jo (I+YC) 
n+V <*C 

_        B(n + r,V-r) _      T(n + r)T(v-r) 

" Y      ä(H,V)     "Y      r(»)r(v) 

By using the first moment mi, y can be expressed as 

*(n+l,v-l) 1 (27) 

5(n,v)      m\ 

Condsidering that the interferogram's magnitude might be normalized with re- 
spect to its expectation, i.e. m\ = 1, the density function in (25) is often char- 
acterized by only a single shape parameter v. Figs. 17 and 18 are exemplary 
illustrations of the density of the p-distribution for different number of looks and 
different shape parameters. It is important to note that the p-distribution tends to- 
wards the conventional distribution for the Gaussian backscatter model in (9) as 
the parameter v increases. Thus, the conventional Gaussian density is included 
as a special case. The degree of heterogeneity can be measured with the esti- 
mated value of the parameter v, i.e. if this value is estimated over two different 
areas, then the area with the larger value is more homogeneous. 

In the Figs. 19 and 20 the accuracy of the new theoretical density is tested 
against the real measured data of Figs. 10 and 12 and compared to the Gaussian 
backscatter assumption. The determination of the shape or model parameter v is 
described in section 4.1.3. It can be seen that the new multilook p-distribution 
fits, in both cases, the observed data much better than the corresponding den- 
sity for the Gaussian assumption (dashed). The larger value of v for patch 24 
indicates higher homogeneity. An example with an even higher degree of het- 
erogeneity is shown in the following section. 
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Figure 17: One-look density of p-distribution for different shape parameter, v = 2.5 
(dotted), v = 50 (solid). Conventional interferogram magnitude for the 
Gaussian model (9) (dashed). 
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Figure 18: Ten-look density of p-distribution for different shape parameter, v = 2.5 
(dotted), v = 50 (solid). Conventional interferogram magnitude for the 
Gaussian model (9) (dashed). 
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Figure 19: Ten-look p-density and empirical normalized magnitude density 
function of patch 1,v- 7.6571. Conventional interferogram mag- 
nitude for the Gaussian model (9) (dashed). 
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Figure 20: Ten-look p-density and empirical normalized magnitude density 
function of patch 24, v = 17.1978. Conventional interferogram 
magnitude for the Gaussian model (9) (dashed). 
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4.   CFAR Detector Scheme 

This sections proposes a fully automatic detection scheme for slowly moving 
targets with constant false alarm rate (CFAR). All necessary parameters, such as 
effective number of looks, coherence and the model parameter v are estimated 
directly from the dataset. The entire signal processing chain for the detection is 
schematically shown in the flow-chart of Fig. 21. 

SLC1 conjugate SLC 2 

Windowed 
Multilooking 

Phase 
Detector 

Magnitude 
Detector 

Estimation of 
Coherence 

Estimation of 
effective Number 
of Looks 

Estimation of 
Model Parameter 

Moving Targets 

Figure 21:   Flow-chart of the two-step ATI-MTI signal processing chain. 
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4.1  Parameter Estimation 
4.1.1   Coherence 

Most commonly the magnitude of the correlation function (coherence) 
between the data of the two channels is estimated by replacing the ex- 
pectation operator in (5) by the sample average 

lüLizi(*)«2(*ri   ._ (28) 

where K is the look number. In [11] it was analytically proved that the 
so-called sample coherence has the density 

/*(« = 2(*-l) (lV)*p(l-p2)*~Vi(*,^,(pp)2)-   (29) 

Using (29) it can be shown that the estimation p is biased, particularly 
for small coherence values p < 0.5. This bias decreases with increasing 
number of independent looks K. In [19] a Maximum-Likelihood (ML) 
estimator of the coherence was derived based on the multivariate density 
function of the two channel complex data. It has been shown that this 
ML estimate is always smaller than or equal to the sample coherence. 
Since the correlation for along-track interferometry is high (|p| > 0.8), 
sample coherence bias is negligible in all practical cases. 

4.1.2   Effective Number of Looks 

The other parameter, besides the coherence, which characterizes the dis- 
tributions of phase and magnitude, is the number of independent sam- 
ples taken to average the interferogram. This parameter is tradition- 
ally called number of looks, based on a special SAR-image processing 
technique to reduce the "speckle noise", e.g. [20, 21]. All multilook 
pdfs were derived under the assumption that the pixels in the interfero- 
gram are independent. After matched filtering in the SAR processor the 
samples are usually no longer independent, and the effective number of 
looks is smaller than the number of samples averaged. Analytic consid- 
eration of the correlation between samples in the derived pdfs is very 
difficult and may be not possible at all. When the effective, or some- 
times called equivalent, number of looks is used instead of the nominal 
number, the statistics of the interferogram are well represented over the 
whole range of coherence [22]. In principle the value of n should be an 
integer. This is usually not the case because the mean over correlated 
samples is taken. All density functions are, however, valid for n GIR+. 
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To reduce sidelobes, at the expense of resolution, the complex inter- 
ferogram is sometimes windowed before the multilook averaging. In 
the ATI-processor used in this report, for instance, overlapping Gauss 
weighting functions (Fig. 22) of form 

f(x)=Aexp 
x2 

2(L/2.354)2 

for \x\ < L and 0 elsewhere, have been applied [23] to the data. 

(30) 

Smooth factor 20, overlap factor 2 

Figure 22:    Window function of the interferometric processor. 

The length of the window L = S ■ O is controlled by the two independent 
parameters smooth, S, and overlap, O. The window repeats itself after 
S pixels and the width is adjusted by O. Let Ax = VQ/BDOP be the ge- 
ometric SAR resolution , given as the ratio of platform velocity vo and 
the processed Doppler bandwidth BDOP, and 5JC = VQ/PRF be the pixel 
spacing. Then, the quotient p = Ax/8x determines the number of corre- 
lated pixels in the SAR image assuming that the matched filter has been 
applied, e.g. [24]. As a rule of thumb, the number of looks is therefrom 
given as 

n=—+ 1 (31) 
P 
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where p is equal to p = Am/OAm = 10 for the Convair radar system 
used. 

Since a more accurate estimation for the number of looks is required, a 
Maximum-Likelihood (ML) estimator of n is derived in the following. 
Maximum-Likelihood estimation is a technique for estimating constant 
parameters associated with random observations. This method takes the 
most likely parameter ö for a given set of observations z by maximiz- 
ing the probability that the observations came from the distribution de- 
fined by the parameters. The parameter is determined by maximizing 
the Likelihood-function 

L(z;a) = max/(z,0), 

where /(•) denotes the density function of Z, dependent on the param- 
eter -&. By solving for the extrema of the density function (7) of the 
difference phase with respect to n, the most likely effective number of 
looks based on the observation is chosen. Assuming that the random 
vector *F 5 has mutually statistically independent elements ¥1,■ • • ,¥#, 
then its multivariate density function is given as the product of the single 
densities of (7) 

K 

h(w,n)=t\hk{^k\n). 
k=\ 

The ML estimator of n can be written as 

K 

f (\f\ü) = max /<£ (y;n) = max Y\hk (Y*;n) • 
V      '     «elR+ nelR+*=i 

or equivalently 

K 

L (\j/;/i) = max ln/»p (v;n) = max Y, mM (W>n) ■ (32) 
V      J     n6IR+ nelR+*=i 

Accordingly, the function L is called the Log-Likelihood function. Fig. 
23 shows for example the Log-Likelihood function for a nominal four- 
look interferogram (5 = 6,0 = 2) of patch 24, with a maximum at 
n = 4.49. Since the number of correlated pixels in the SAR images 
is p = 10, only every 10-th pixel of the resulting interferogram has been 
taken to calculate the Likelihood function (in order to assure statistical 
independence between observations). 

5 Associated with the realizations of the phase differences vyi, • • •, \yK. 
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Figure 23:   Log-Likelihood function versus number of looks for patch 24. 

Figs. 24 and 25 show the corresponding histograms superimposed to 
the theoretical density functions for both the rough estimation in (31) 
(n = 2 * 6 * 2/10 +1 = 3.4) and the ML estimate. There is much better 
agreement for the latter. A result based on simulated phase data in Fig. 
26 shows that the proposed ML estimate for n is unbiased and normal 
distributed even for a relatively small number of samples K — 10. 

Since the density function (7) is a highly nonlinear function its calcu- 
lation and maximization is difficult and usually computationally time 
consuming. Using the gamma function derivative 

dT{n) 
dn 

= T{n)D{n) 

and 

d2F1(n,l,l/2,x) ~       T(n + k)       ..      f.     _,,„ 
= ^Lr^rnrJU2){D{n + k)-Din))^ dn Vr(«)r(*+i/2) 

(33) 
where D(-) is the so-called Psi or Digamma function [25], a numerically 
efficient iterative approach 

"m+l =nm + 
-"(v,Äm) 
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based on Newton's algorithm can be used. Ll and L" are the first and 
second derivatives of the Log-Likelihood function with respect to n. In 
the case where n is an integer, the derivatives of (D.4) may be used rather 
than those given in (33). 

H    0.6- 

patch24s6o2:      Marginal pdf of phase, rho=0.95012, Nlooks=3.4 

Phase [deg] 

Figure 24:   Marginal probability density function of the phase of patch 
24 for an effective number of looks n = 3.4. 
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patch24s6o2:      Marginal pdf of phase, coherence=0.95012, N!ooks=4.4949 

S.    °-6 

Phase [deg] 

Figure 25:   Marginal probability density function of the phase of patch 
24 for an effective number of looks n = 4.49. 

Normal-Distributed ML-Estimator of the Number of Looks 
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Figure 26: Histogram of the Maximum-Likelihood estimation of n for simulated 
phase data along with the normal distribution given by the plotted ex- 
pectation and variance. 
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4.1.3   Model Parameter v 

Using the moments in (26) it is possible to derive a closed form solution 
for the unknown model or shape parameter v of the amplitude's density 
function in (25). This parameter indicates the degree of heterogenity of 
the underlying terrain. The first and second moment of the p-distribution 
are given as 

lg(n + l,V-l) 
m':=£?=y      B(n,v) 

^Ef-^W-2). (34) 

Forming the ratio m\/m2 leads to 

^ + 2,v-2)mi 
'     B(n+l,v-\)m2 

Inserting (35) into the first equation of (34) and using that B(n,v) = 
r(n)r(v)/r(n+v) results in 

r(n+l)2r(v-l)2       _m\ 
r(«+2)r(v-2)r(n)r(v)   m2' 

Using the identities for the Gamma-function given in [12] 

r(v)= (v-i)r(v-i) 
= (v-l)(v-2)r(v-2). (37) 

which are valid for any real value of v, yields 

n(v - 2)      _ m\ 

(36) 

(n+l)(v-l)     m2' 

or equivalently as a solution for the unknown parameter, 

2nm2-(n+l)m} 0. 
v = ; 7T2- ^3^ nm2 — {n+\)m\ 

Assuming that the interferogram amplitude is normalized to m\ = 1, and 
having an estimate for the effective number of looks n (see subsection 
4.1.2) as well as the computed estimation for the second moment 

1 L 

Xv
Z=l 

(L denotes the number of used amplitude samples) an estimate v of the 
shape parameter can be computed by using (38). The effectiveness of 
this estimator has been previously demonstrated with the real data re- 
sults shown in Figs. 19 and 20. 
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4.2 Test Statistics 

Depending on the spatial scale of the resolution cell, the previously introduced 
density functions can be used to define a CFAR detector for slowly moving tar- 
gets. 

4.2.1   Small Resolution Cell Size 

In the case where the dimension of the moving targets is on the order 
of the spatial geometric resolution of the SAR, a possible test statistic 
might be the comparison of the cell's phase and amplitude with suitably 
chosen thresholds. This assumption means that the backscatter power 
contained in the cell mainly results from the desired target and that the 
clutter (or speckle) power is negligible. The threshold can be determined 
as the a-percentile of the pdf in (7), where a denotes a given false alarm 
rate. Integration of the highly nonlinear density function (7) with respect 
to the phase to determine the threshold is analytically very difficult or 
may even be impossible. Hence, numerical integration has to be used. 
Fig. 27 shows the relation between the desired threshold ■% and the 
given false alarm probability a. This probability can be recognized as 
the corresponding region under the phase density function. 

Marginal pdf of phase,        coherence=0.981, N!ooks=10 

Figure 27:   Phase threshold for the moving target detector depending 
on the given false alarm probability. 
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The false alarm rate for the phase detector can be further reduced by 
taking into account the fact that stationary targets (clutter pixels) with 
large phase values most likely have a small amplitude. This statistical 
behaviour can, for instance, be recognized from the joint distribution of 
the phase and amplitude in Figs. 3 and 4. Therefore, a second step in the 
test for the remaining pixels can be the comparison of their amplitudes 
with a threshold x\z- Assuming the estimate of the model or shape pa- 
rameter v has been computed via (38), this amplitude threshold can be 
determined in closed form from the pdf in (25). The corresponding mul- 
tilook probability function of the amplitudes density or p-distribution is 
given as 

fttO-jf/zM^^jf- 
r.n-\ 

f   C" 
B(n,v)Jo  (1+Ya)"+V 

2Fi(n + v,n;\+n,-yQ 

da 

(39) 
B(n,v) n 

with Y= B(n +1, v - \)/B(n, v). It can be seen from (39) that the prob- 
ability function, and therefore the threshold, is independent of the co- 
herence |p| due to normalization. In Fig. 28 the probability function of 
the p-distribution is plotted along with the amplitude threshold x\z for a 
given false alarm rate a. 

2 2.5 3 
Amplitude T|z 

Figure 28:   Amplitude threshold for the moving target detector depend- 
ing on the given false alarm probability. 
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4.2.2   Large Resolution Cell Size 

In cases where the spatial resolution is much larger than the target size, 
the clutter power can no longer be neglected. Here, the hypothesis"clutter 
only" has to be tested against the alternative"clutter plus target". Hence, 
the test problem might be characterized as: 

X = a + ¥. ¥t   have pdf (7) (40) 

oGlR 

Hypothesis H: a = 0 

Alternative K: a ^ 0. 

(41) 

The test statistic can be derived, for instance, via a Maximum-Likelihood- 
quotient criterion, see e.g. [26, 27]. This criterion requires the maximal 
value of the ratio 

W Mso) Mso) (42) 

where ä denotes the Maximum-Likelihood estimator of a and the den- 
sity function fx(x) is given by (7). The test t (x) has to be compared to a 
threshold: 

T(r\ _ /   1     >    if     *(x) > T\ 
{-} ~ \ 0   , else 

The threshold T| has to be determined for a given false alarm probability 
a. To derive such a threshold is generally very complicated and an open 
issue for the moving target detector. In some cases the asymptotic result 
given in [28] can be used. It states, that, 2lnt(X) is Xrdistributed (under 
the hypothesis) asymptotically for large k, where k denotes the number 
of samples. Therefore, the threshold can be chosen as 

Tl = expUxfi0 

assuming that k is large. Herein, %\ a means that number which is ex- 
ceeded by a chi-square distributed random variable with probability a. 
One way to verify the suitability of such a test and threshold could be to 
have the SAR raw data re-processed with a lower geometric resolution. 
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4.3 Results 
The aim of this section is to demonstrate the capability of the proposed detector 
to detect slowly moving targets based on real measured SAR data. The imagery 
used, was collected during the Petawawa experiment 1999. The test site was 
comprised of composite terrain containing a part of a highway, forests and areas 
with shrubby vegetation. It also included a marked-off area with numerous ob- 
jects used as artillery targets including different military vehicles, see Fig. 31. 
The entire processing chain depicted in Fig. 21 has been executed. The coher- 
ence was estimated to p = 0.97187 and the effective number of looks via MLE to 
n = 12.86. The theoretical phase density function for these parameters is plotted 
in Fig. 29, and is superimposed over the histogram. The almost perfect agree- 
ment of the two curves can be clearly recognized. It confirms the validity of the 
multiplicative clutter model even for extended heterogeneous surfaces consisting 
of composite terrain. 

julietb:      Marginal pdf of phase, gamma=0.97187, Nlooks=12.86 
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Figure 29: 

0 2 
Phase [deg] 

10 12 

Histogram of the interferometric phase for the highway area along with 
the theoretical probability density function. 

Inherent phase errors probably caused by mismatched SAR processing or signal 
reflections on mechanical antenna/platform structures have been eliminated prior 
to the detection. In fact, the phase values have been calibrated to zero mean by 
removing any linear trend included in the phase data. The trend was estimated 
in a least mean square sense. 
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The corresponding histogram of the scene's magnitude is shown in Fig. 30 along 
with the p-distribution for an estimated model parameter v = 6.9739. The rela- 
tively small value of v indicates a large degree of heterogeneity in the underlying 
terrain. To demonstrate the improved agreement of the new p-distribution with 
the real data, the original magnitude density derived under the homogeneous 
backscatter assumption is also plotted. 

Julietb:      Marginal pdf of magnitude, gamma=0.97187, Nlooks-12.86 

Figure 30, 

2.5 3 
Magnitude 

Histogram of the interferometric magnitude for the highway area along 
with the p-distribution (solid) and the original magnitude pdf (dashed). 

Even though the p-distribution shows a slight deviation from the real data for 
smaller amplitudes, the larger magnitudes match accurately. For MTI this prop- 
erty is the crucial one since the shape of the tail determines the detection thresh- 
olds. For the afore mentioned values of p,n and v, CFAR thresholds were com- 
puted for two different false alarm rates a = 2.5 • 10-5 and a = 1.0 • 10-6. While 
the false alarm rate for the phase was held fixed at a = 0.005, the value for 
the magnitude was chosen to be either a = 0.005 or a = 0.0002. The calcu- 
lated threshold for the phase was % = 7.3874 degrees and for the magnitudes 
r|£ = 4.9049 and rj^ = 11.9720, respectively. Fig. 31 shows the resulting de- 
tections. For the higher false alarm rate, five targets are detected, four of them 
known to be stationary from ground-truth data (marked by squares), i.e. those 
are actual false alarms. After lowering the false alarm rate only the correct mov- 
ing target remained (marked by a circle). As mentioned before, the proposed 
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detector scheme works only for slowly (compared to the platform) moving tar- 
gets which are still well focused by the stationary reference function. This can 
be recognized in this example because it is known that there were several fast 
moving vehicles on the highway during the measurement as well. Those targets 
are highly defocused and smeared, i.e. their energy is spread over an extended 
area, they are blurred and have disappears in the clutter. 

50 100 150   200   250   300   350   400   450   500 
Range 

Figure 31: SAR image of the Petawawa target area used for slow moving target de- 
tection. All marked detections correspond to a = 2.5 • 10-5, whereas the 
circled target relates to a = 1 • 10~6. The arrow indicates an undetected 
fast mover. 
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5.   Conclusions 

In this report, a fully automatic detection scheme for slow moving targets within 
SAR ATI imagery has been developed, which exploits the phase differences of 
the radar returns from two independent receivers. This so called along-track 
interferometric detector is based on an accurate statistical characterization of the 
phase and magnitude of the interferogram. 

It was shown with real airborne SAR data that the conventional density function 
of the phase, derived under the assumption of homogeneous clutter with Gaus- 
sian backscatter, agrees almost perfectly with reality even for highly heteroge- 
neous clutter. It was demonstrated that this is due to an underlying multiplicative 
model of the backscatter distribution, where the multiplicative random variable 
cancels out when the phase is computed. In contrast, this term remains in the 
magnitude and causes, therefore, strong deviation between the theoretical and 
measured data. 

Motivated by this discrepancy, a novel distribution was derived for the interfer- 
ogram's magnitude. This pdf, called p-distribution was shown to match the real 
data much more accurately, particularly for extremely heterogeneous composite 
terrain. Estimation procedures for all involved parameters were derived and their 
suitability proven with real data. Since many of the introduced density functions 
contain indefinite power series which tend to infinity, the problem of numeri- 
cal stability in practical implementations was also addressed. In fact, recursive 
algorithms have been proposed based on asymptotic expansions of Gauss' hy- 
pergeometric function. 

Since the emphasis of this study was on the detection of slow ground moving 
targets, future work will have to focus on different open items. Fast moving 
objects (compared to the platform velocity) are highly defocused by the SAR 
processor which causes them to blur or even fully disappear in the SAR image. 
Since the proposed detector does not work for such targets, different methods 
have to be developed, for instance, based on Doppler filtering etc. However, 
for spaceborne SAR systems this effect can be neglected for ground moving 
vehicles. Even if targets are well focused, the problem of a large displacement 
of the movers arises, i.e. the image of the moving target appears in the wrong 
location on the stationary SAR image. Therefore, the accurate estimation of the 
correct position and speeds are also open issues. 
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Annex A 
Limit of the Conditional Variance of the Phase 

Using (14), the conditional density function of the phase for a fixed (but large) 
magnitude is given as 

/«p|E=ri(vh) = ^^exp(a(cos\K- l))/g(a) (A.l) 

where 

a=-M%      and      ,„) = ff(.lf_[W L) 
0-lPl2) 8( '   \h    ' r(t+i)r(^-t)(2a)'J- 

Since a is assumed to be large, the fluctuation of the phase around zero will be 
relatively small, so that the Taylor-series expansion 

cos\|/^l-^- (A.2) 

at V|/0 = 0 can be used 6. Inserting (A.2) into (A.l) yields 

/^|£=Ti(¥|Tl) = ^^expr-^-J/g(a). (A.3) 

As the the conditional expectation is zero, the conditional variance can then be 
calculated as the integral 

varOF|£ = Ti)^  /°V/«F|£=T1(Y|Ti)<fy 
J—oo 

_    V2üä r°° /    ™"2' 
~~      2% 

V2iä VS 
= 2-^r7*(°0- 

2TC 4 (a/2)3/2 

1     =0(^)^    0 (A.4) 
ag(a)        V« 

forallO< |p| < 1. 

6The error e = cosy - 1 + \)/2/2 is for example smaller than e = 5 • 10-5 when |\|/| < 12 degrees. 
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Annex B 
The Noncentral Inverse Chi-Square Distri- 
bution 

Let the random variables Z„ be mutually independent complex standard normal 

distributed Z ~ top (0,1) 7 with density 

then the random variable X = Zl=\ Z„ is Chi-square distributed with 2v-degrees 
of freedom X ~ %\\ and density t12] 

/xW = 2^)^_1 exP(-^2)        x > °' (BJ) 

Further, let ^ > 0 and y > 0 € R > 0, so that Y = p/(X + y), then the random 
variable Y is said to be noncentral inverse Chi-square distributed Y ~ X^v (Mrf) 
with 2v-degrees of freedom, shape parameter n, noncentrality parameter y and 
density 

Proof. 
The cumulative probability function of Y is given as 

= 1_p{x<ezWj = l_ft(ez2). (B.3) 

The density function can be calculated as the derivative of (B.3) 

dy \  y   J \ y 

1      {V-WV-1 ^ftZzV-*        o<y<^.   (B.4) 
2vT(v) \   y   J      y2       \     2y  J '     y 

7The real- and imaginary part of Z are statistically independent standard normal distributed 

3^(0,1/2). 
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For the interesting special case of y = 0, i.e. the central inverse Chi-square dis- 
tribution, the density function in (B.4) is 

F mv+1    / a 
m\yJ    ~*V y 

exP   --. &v,y > 0 (B.5) 
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Annex C 
Probability Density Function of the Multilook 
Sample Covariance Matrix for Non-Gaussian 
Clutter 

Let the sample covariance matrix R = ELi %%-   eQ        be comPlex Wishart 

distributed R ~ Vlfi {n, R) [6]. Further, let the real random variable X be central 
inverse Chi-square distributed with 2v degrees of freedom and shape parameter 
/i, X ~ Xjv

2 (p) and the density given by (B.5). The product matrix Q = XR has 
the probability density function 

: ^
Vdet(q)-W / 1 V+V"m+1. (Q1) ^vdet(q)""w / 1 

/Q(q) "   /M(R)r(v)   V/i+ trfR-^} 

with/m(R) = ^m-1)/2r(n)---r(n-m+l)det(R)". 
Proof: 
The density function of a product Z = XY of two random variables can be calcu- 
lated via 

/z(z)=/    O/XHV)^, (C.2) 
./ — oo  |VV| W 

where /xy(*,y) denotes the joint density function [14]. In the case where X and 
Y are independent, the joint density can be replaced by the product of the single 
densities. Using (C.2) and (3), the density of Q can be expressed as 

ÄW-r5ft(w)A(w)*' 
^det(q)-"  r/I\**,~,ViO*«{R-Q})<h,     (C.3) 
/„(R)r(v) h W 

Substituting ( = 1/vf in (C.3) leads to 

/<^ = 7^f'"+v-ra~p^+«{H-'Q})<)*. 

Using the integral identity in [25] yields (C. 1). 
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Annex 
Practical Implementations of the PDF's 

D.1 Asymptotic Expansion of Modified Bessel Functions 

For large arguments x, the modified Bessel function / of order v can asymptoti- 
cally be written as [25, 12] 

/vW- VSS (J<0
( l) r(*+i)r(v+i-*)(2^J'     (D,) 

and the modified Bessel function K of order v as 

V jy\ ~ V^exP(-^) ff        r(v + /:-i) 1    \ 
*vW~-^5T- t?or(^i)r(v+i-,)(2^J ■        (D"2) 

where T(-) denotes the Gamma function. In order to avoid the use of the Gamma 
function, the sum-term on the right side of (D.l), can be re-written as 

y ( n*    r(y+*+i)      i  _f, n.n?=1iAi-(2/-i)] 
to       r(*+i)r(v+J-ifc)(2x)*   £0

l   ;       *!(&)*      ' 

where /J = 4v2. The upper limit K of summands is dependent upon the required 
accuracy. 

D.2 Gauss' Hypergeometric Function for the Phase' PDF 

Gauss' hypergeometric function 2^1 (•) is a special case of the generalized hy- 
pergeometric function „Fm(-) and is defined as the infinite series [12],[25] 

F(a,b;c;z)=  2Fi(a,b;c;z) 

_      r(c)     ^T(a + k)r(b + k)zk 

T(a)T(b)to       r(c + k)       *!' 
where a, b, c are real scalars and z can be a complex value. Using Gauss' relation 
for the continuous function F(a+ l,b;c;z) [12], 

and assuming an integral number of looks n, a recursion formula for the hyper- 
geometric function in the pdf (7) can be defined 
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,     ,         2n-l/2-(n-l)z„,    , , ,«   x 
F(n+l,l;l/2;z) = ^^ '-F(n,l;\/2;z) 

' "~1/2F(n-l,l;l/2;z). (D.4) 
n(z-l) 

The starting values for the iteration are given as 

F(0,l;l/2;z) = l (D.5) 

and 

F(..I;I/2;^ f,1.;,25;
3;^_1(^ 

~ JB+IL^ = f a 2*. (D.6) 

where a* = T(k+ 1)/T(k+ 1/2). Since the power series in (D.6) still has an in- 
finite number of addends, convergence has to be ensured. The quotient criterion 
for the convergence of power series, for instance, demands that the limit of the 

z (D.7) 

is smaller than one. From (D.7) it is necessary, that 

a*+iz*+1 , 
hm 7— = z < 1 • 

This is, however, fulfilled for the density function of the phase in (7) because the 
argument z = |p|2cos2(\|/) is obviously always smaller than one, if |p| < 1. 

If the effective number of looks, n, is a rational number, the value of F (n, 1,1 /2, z) 
can be computed via an interpolation between the integral values. Here, it is 
more accurate when the natural logarithm log(F(-)) is interpolated instead of 
F(-) itself. Since F(-) versus n has an exponential-like shape, its logarithm is 
approximately a straight line, which can be interpolated with much less error. 
Fig. D.l and Fig. D.2 demonstrate the accuracy of the different implementations 
of Gauss' hypergeometric function as a direct sum in (D.3) or as a recursion 
(D.4) with interpolation. It can be seen that an enormous error (~ lOOdB) might 
be avoided, particularly if both parameter p and n are relatively large. This is 
exactly the case in along-track interferometry. 

ratio .,, 
ak+lz

k+l =   k+\ 
akz

k        k+1/2 
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Figure D. 1:   Error of direct-sum implementations of Gauss hypergeometric function 
versus coherence for integral number of looks. 
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Figure D.2:   Error of direct-sum implementations of Gauss hypergeometric function 
versus number of looks for different coherences. 
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